159

A Summary of the Work on the Proof
Theory for the Language POOL

Frank de Boer

Centre for Mathematics and Computer Science
P.O. Box 4079
1009 AB Amsterdam
The Netherlands

March 28, 1989

Under the guidence of Jaco de Bakker I have been working with Pierre
America in the ESPRIT project 415 on the proof theory of the langunage POOL
(a Parallel Object-Oriented Language [Am)]).

A program of the language POOL describes the behaviour of a system con-
sisting of objects. An object operates upon a local state which assigns objects
to variables. A local state is directly accessible only to the object to which it
belongs.

An object comes into existence by some “creative act® of some other object.
The identity of the newly created object is stored into the local state of the
“creator”. When an object is created a local process is started up which then
will run in parallel with the local processes of the already existing objects.

Objects interact by some form of remote procedure call (also called rendez-
vous). A call consists of a specification by the sender of the receiver, a procedure
(also called a method), and some parameters. When such a call is answered by
the receiver the local process of the sender is suspended until the execution of
the specified method (by the receiver) has terminated, and the result has sent
back.

Objects are grouped into classes. All objects in one class (the snstances of
that class) have the same kind of variables, the same methods, and the same
local process. In this way a class describes the behaviour of its instances.

One of the main proof theoretical problems of such an object-oriented lan-
guage is how to reason about dynamically evolving pointer structures. To master
the complexity of this problem we investigated several approximations of the
language POOL.

First we studied the proof theory of a version of POOL called P ([B1]).
The objects of the systems described by this language may interact only by a

160

synchronous communication mechanism which consists of sending and receiving
objects. When an object wants to send an object it explicitly states to which
object. On the other hand receiving an object does not require in general the
identification of the communication partner. In those cases then the communica-
tion partner is selected non-deterministically. This communication mechanism
is similar to the one embodied in the language CSP. The main difference is that
the communication partner in CSP is identified statically, which is not the case
in the language P.

To describe a system of objects we view variables as dynamic one-dimensional
arrays. The objects themselves are identified by integers in such a way that the
value of a variable = of an object identified by the number n is given by the nth
element of the array denoted by z. Using this scheme we showed how to apply
the proof theory developed for CSP ([AFR]) to this language P.

However, this coding mechanism of objects makes the abstraction level of the
reasoning about program correctness less high than that of the programming
language. Pierre America developed a proof theory for the language SPOOL (a
Sequential version of POOL) in which one reasons about a system of objects at
a higher abstraction level ([A1]). In more detail, this means the following:

o The only operations on “pointers® (references to objects) are

— testing for equality
~ dereferencing (looking at the value of a variable of the referenced
object)

e In a given state of the system, it is only possible to mention the objects
that exist in that state. Objects that do not (yet) exist never play a role.

Strictly speaking, direct dereferencing is not even allowed in the programming
language, because each object only has access to its own . variables. But
to dispense with this feature would ask for even more advanced techniques to
reason about the correctness of a program.

The completeness proof of this proof system for SPOOL requires quite an
elaborate use of the standard techniques ([Ba)), one might almost say that these
techniques are, in this application, “stretched to their utmost limits”.

This abstract way of reasoning about dynamically evolving pointer struc-
tures we then applied to the language P ([A2]). Described very briefly the
resulting proof method consists of the following elements:

o A local stage. Here we deal with all statements that do not involve com-
munication or object creation. These statements are proved correct with
respect to pre- and postconditions in the usual manner of sequential pro-
grams [Ba,Ho|. At this stage, we just use assumptions to describe the
behaviour of the communication and creation statements. These will be
verified in the next stage. In this local stage, a local assertion language is
used, which only talks about the current object in isolation.

161

o An sntermediate stage. In this stage the above assumptions about com-
munication and creation statements are verified. Here a global assertion
language is used, which reasons about all the objects in the system. For
each creation statement and for each pair of possibly communicating send
and receive statements is verified that the specification used in the local
proof system is consistent with the global behaviour.

o A global stage. Here some properties of the system as a whole can be
derived from a kind of standard specification that arises from the inter-
mediate stage. Again the global assertion language is used.

Finally we showed how to generalise the proof theory developed for the Ada
rendes-vous ([G]) to the rendes-vous mechanism of POOL ([B2]). The main
difference between these two mechanisms being that in the language Ada we
have a statically fixed recursion depth of a rendes-vous, whereas in POOL we
do not have such a static bound to the recursion depth.

Acknowledgement

I want to stress in particular Jaco’s persistent insistence on a high quality of the
presentation without which most of this work would be a mere solipsistic activ-
ity. Especially this field of proof theory, which gives rise to rather complicated
formalisms, requires special care concerning the presentation.

References

[Am] P. America: Definition of the programming language POOL-T. ESPRIT
project 415A, Doc. No. 0091, Philips Research Laboratories, Eindhoven,
the Netherlands, September 1985.

[Al] P. America, F.S. de Boer: A proof system for a sequential version of
POOL. C.W.IL. Report, to appear.

[A2] P. America, F.S. de Boer: A proof system for a parallel language with
dynamic process creation. In: Deliverable of the ESPRIT 415 Working
Group on Semantics and Proof techniques, 1988.

[AFR] K.R. Apt, N. Frances, W.P. de Roever: A proof system for communi-
cating processes. ACM Transactions on Programming Languages and
Systems, Vol. 2, No. 3, 1980, pp. 359-385.

[Ba] J.W.de Bakker: Mathematical theory of program correctness. Prentice-
Hall International, Englewood Cliffs, New Jersey, 1980.

162

[B1]

(B2]
[G]

[Ho]

F.S. de Boer: A proof-rule for process-creation. In: M. Wirsing (ed.):
Formal Description of Programming Concepts 3, Proc. of the third IFIP
WG 2.2. working conference, Gl. Avernaes, Ebberup, Denmark, August
25-28.

F.S. de Boer: A proof system for the language POOL. C.W.1. Report,
to appear.

R. Gerth, W.P. de Roever: A proof system for concurrent Ada pro-
grams. Science of Computer Programming 4, pp. 159-204.

C.A.R. Hoare: An axiomatic basis for computer programming. Com-
munications of the ACM, Vol. 12, No. 10, 1969, pp. 567-580,583.

